
eXcentrix
A Client-Server Architecture for Language Services

Francis Malka, Éric Forget, and Patricia Watt

Abstract

Semantix developed the eXcentrix client-server architecture as a solution to the problems 
encountered when integrating its translation server into various text applications. At the 
core of the architecture is the eXcentrix engine which can communicate with clients and 
servers written in C, C++, Pascal, Java, AppleScript, and Visual Basic. These languages 
have different ways of handling pointers, references, function name mangling, memory 
allocation, garbage collection, exceptions, and callback functions. This paper explains 
how the eXcentrix engine handles each of these issues. eXcentrix was developed for 
linguistic services but can be applied to any domain in which an abundance of servers 
and clients cause compatibility problems for users and endless reprogramming for 
developers.

1.The Birth of an Architecture

Over the last few years, programmers and 
linguists at Semantix have been developing an 
advanced translation engine. Strangely enough, 
our biggest challenges so far have not arisen 
from translation itself, but from integrating the 
translation software into other applications. We 
started to draw a diagram of all the parts 
involved in the translation process. We 
identified the client application, the translation 
user interface, the translation server, the 
dictionary server, and the transport layer. Then 
we defined common APIs so all the parts could 
communicate in a standard way.

At first, it seemed like an elegant way to divide 
the work among the members of the 
development team and to encapsulate the 
complexity of every part. But we soon realized 
that the architecture could be applied to other 
language services, such as spell checking, 
grammar checking, thesaurus, and hyphenation. 
New objects were created to support all these 
services and even new services that might 
appear further down the road.

A question then came to everyone’s mind: why 
not publish this architecture and let anyone 
design parts that would be compatible? 

eXcentrix was born. We then added filters and 
plug-ins so eXcentrix could work from virtually 
any application. We also created different glues 
so that third party developers could write code 
in C, C++, Java, Pascal, AppleScript, and 
Visual Basic.

This paper gives an overview of the different 
parts of the architecture. It explains how we 
dealt with certain programming challenges. And 
it also shows how easy it is to implement 
eXcentrix-compatible language servers and text 
applications on Mac OS, Windows, and Linux.

2. The Ground Rules

As we worked through our difficulties with the 
way existing language servers interact with text 
applications, we determined some basic 
requirements for our architecture:

Standard Server API. Currently, developers of 
language servers must adapt their programs to 
suit many different APIs. We decided to have a 
standard server API that would make it 
possible to write a single language server that 
can plug into any client application. 

Standard Client API. Similarly, we needed a 

eXcentrix: A Client-Server Architecture for Language Services 1



standard client API so that client text 
applications could be written to support 
different language servers.

Clients should able to Access Remote 
Services. Currently, client applications cannot 
access a service on a remote language server. We 
decided to include features that would make 
remote access possible:

• Client/server communication using 
standard protocols like TCP/IP and 
AppleEvents

• Filters for stream and object data

Support for Different Programming 
Languages and Frameworks. Developers 
should be able to write their applications using 
whichever language or framework they like. 
Initially, we are supporting C, C++, Pascal, 
Java, AppleScript, and Visual Basic, and the 
PowerPlant and MFC frameworks.

Since we were figuring out ways to simplify the 
lives of programmers, we thought we may as 
well simplify the lives of end users as well. Here 
are a few more basic principles related to 
usability:

Standard User Interface. Currently, each text 
application has a different user interface for 
language services even though the services are 
very similar. We decided to have a standard 
interface for each language service. Furthermore, 
the interfaces should have a platform-specific 
look-and-feel. 

Services Menu. We decided to add a standard 
Services Menu to the menu bar of all client text 
applications. The Services Menu would list all 
the available language services so the user can 
choose any service from within any text 
application.

Standard User Dictionaries. Currently, if a user 
creates a personal dictionary in one text 
application, he or she cannot use the same 
dictionary in any other text application. We 
decided to have a standard format for user 
dictionaries so they can be used in all text 
applications and for all language services.

2 eXcentrix: A Client-Server Architecture for Language Services



Centralized Preferences in one Control Panel. 
Currently, users must set their language 
preferences for each text application 
individually rather than globally as they would 
do to change their printer, desktop colors, and 
date/time formats. We decided to put all 
preferences for language services together in one 
control panel.

In addition, we decided to support features that 
Mac users expect to see:

• All parts are scriptable (client, server, 
interface, etc.)

• Mac look-and-feel

• Contextual menus

• Control Strip module

• Location Manager-awareness

• Drag-and-drop

3. The Finished Product

Here’s how the architecture turned out. 
Basically, it consists of three layers: 

Client Application. Any application that uses 
text such as a word processor, an email 
application, a Web browser, or a database.

eXcentrix. The Engine and various Parts, Glue, 
and Wrappers

Server Part. Any text-based application or 
library that provides language services such as 
grammar checking or translation to client 
applications

The architecture can be implemented with or 
without a communication protocol. If the client 
and the server are on the same machine, the 
architecture is usually implemented as follows:

 

                  

                                    

                

           
     

                                    

            

                         

               

                                 

                                 

eXcentrix architecture implemented without a communication protocol

If the client and the server are on separate 
machines or if it is desirable to use a 
communication protocol even though the client 

and server are on the same machine, the 
architecture looks like this:

eXcentrix: A Client-Server Architecture for Language Services 3



                  

                                    

                  

            

            

               

                         

                                 

           
     

                                    

                                 

                

                                 

                

                                 

                               

                

eXcentrix architecture using a communication protocol

Let us introduce you to the various parts: 

eXcentrix Engine. The part that makes it 
possible for clients and servers of all sorts to 
communicate. It receives requests from a client 
and translates them into a request 
comprehensible to a server. Likewise, it receives 
responses and results from a server and 
translates them into a form that the client can 
understand. 

Server Part. The part that does the real 
processing—for example, a spell checker or a 
translation server. This part does not 
communicate with the end user directly since it 

may be located on a remote server machine. If it 
has any GUI components, they would be for 
network administration tasks and would be 
located on the server machine.

Filter Part. Accepts stream or object data as 
input, transforms it in some way, and returns 
the modified data to its source.

Transporter Part. Carries binary and object 
data between client applications and language 
servers if they reside on different machines. 
Transporters have been developed to support 
the TCP/IP and AppleEvents protocols, but 
developers can create new transporters to 

4 eXcentrix: A Client-Server Architecture for Language Services



support other protocols.

Interface Part. The means of communication 
between an end user and eXcentrix. The 
interface can include menus, dialog boxes, and 
other graphical objects.

Service Part. Though we originally focused on 
language services, the architecture can handle 
other types of services—for example, financial 
services. A Service Part groups all the classes 
required for a particular category of service. For 
language services, the Language Service Part 
includes classes that relate to words, text, and 
services like grammar checking and synonym 
finding.

Glue. A “thin” layer that makes it possible for 
an application written in any language (C, C++, 
Java, Pascal, AppleScript, Visual Basic) to 
communicate with the engine. The glue is 
transparent to the application developer who 
simply uses the eXcentrix classes and methods.

Wrapper. Classes that can be inserted between 
the engine and an application developed with a 
framework like PowerPlant. The wrapper 
classes for a particular framework conform to 
the nomenclature and functionality of the 
framework. Usually, you would derive your 
classes from these wrapper classes rather than 
deriving them directly from the framework 
classes.

4. Interfacing with Any Programming 
Language or The Art of Glue

The engine is able to communicate with clients 
written in C, C++, Pascal, Java, AppleScript, 
and Visual Basic. These languages all have 
different ways of handling pointers, references, 
function name mangling, memory allocation, 
garbage collection, exceptions, and callback 
functions.

In this section, we take a look at the problems 
we faced interfacing with these languages and 
explain our solutions.

4 .1 The Name Mangling Problem

The engine offers an object-oriented API. All the 
classes inside the engine are written in C++. 
Exporting engine functions in C++ would have 
been a nightmare since the C++ compiler would 
have generated very long and hard-to-
understand mangled names. It would have been 
impossible to trace these names from a language 
other than C++. Worse, different C++ 
compilers do not use the same name mangling 
algorithm, so every application developer 
would have needed to use the compiler that we 
used to compile the engine.

To get around the name mangling problems, we 
renamed all engine functions by concatenating 
the class name with the method name and 
exported them as simple “extern C” functions. 
For instance, the xs::Connection::GetName() 
method was exported as 
xsConnectionGetName. This meant we couldn’t 
overload functions with different parameters. 
Fortunately we had enough imagination to come 
up with a different name for each function. To 
offer an object-oriented API to application 
developers, we then had to wrap the functions 
in classes outside the engine. This process may 
seem to generate a lot of extra work, but it 
allowed us to wrap the classes in the best way 
for each programming language.

4 .2 Fragile Classes

Another problem associated with exporting an 
object-oriented API is fragile classes. If class 
definitions change between versions of the API, 
all applications using the API need to be 
recompiled to take into account the new size 
and the new positions of member variables, and 
virtual functions. 

If we were to include our class definitions in our 
public header files, our classes would be fragile. 
To avoid this, we published an API consisting 
of object-oriented C functions. This apparent 
oxymoron simply means that the first 
parameter of every function is a pointer to the 
class to which the function belongs (or “this” as 
we would call it in C++). This allowed us to 
wrap these functions easily in glue classes.

eXcentrix: A Client-Server Architecture for Language Services 5



4 .3 The Solution to the Pointer Problem: 
No Pointers

The problem can be stated simply: some 
programming languages, such as C, C++, and 
Pascal, support pointers and others, such as 
Java, AppleScript, and Visual Basic, don’t.

The main idea behind the solution we’ve 
implemented is to get rid of pointers. Instead, 
for each new object instantiated in the engine, 
the engine returns a unique ID to the calling 
application. This ID is a 32-bit integer, a basic 
type well supported by all languages and 
scripts. The same ID is used to free the object 
when it is no longer needed.

The use of IDs also allows for extra validation 
inside the engine. IDs are allocated within a 
predefined range by the engine and are 
validated every time an API function is called. 
The validation has no overhead cost since it 
consists of comparing two integers for each 
object received as a parameter. This mechanism 
makes it impossible to crash the engine by 
passing it dangling pointers. If the calling 
application passes an invalid ID, an error code 
is returned. If an application passes a random 
ID that turns out to be valid, the engine checks 
that the object type of that ID is the expected 
object type for the given parameter. If the object 
type isn’t valid, an error code is returned. And 
even if the object type turned out to be valid, 
the engine would still be manipulating an object 
of the correct type and would not crash.

Object IDs are visible to the programmer 
working in procedural languages such as C and 

Pascal. Objects are created by calling the New() 
function and are deleted by calling the 
Dispose() function. In object-oriented languages 
such as C++, Java, AppleScript, and Visual 
Basic (dare I call VB an object-oriented 
language?), object IDs are enclosed in glue 
classes. For these languages, the programmer 
need only use the glue classes which manipulate 
the IDs transparently. The New() and the 
Dispose() functions are called respectively by 
the constructor and destructor of the glue 
classes.

4 .4 The Solution to Garbage Collection: 
Reference Counts

The engine maintains a reference count for each 
object. When an object is created, its reference 
count is set to 1. Each time the calling 
application makes a new reference to a given 
object, its reference count is incremented. When 
a reference to an object is no longer needed, the 
object’s reference count is decremented. When 
the reference count reaches 0, the engine 
destroys the object.

In procedural languages, the reference count is 
handled explicitly by calling the Own() and the 
Disown() functions. Own() increments the 
reference count; Disown() decrements it. In 
object-oriented languages, Own() and Disown() 
are called automatically in the assignment 
operator and the copy constructor. These 
operators disown the original object that was 
referenced (decrement its reference count) and 
own the new one (increment its reference count). 
Here’s a simplified version of the assignment 
operator:

const MyClass &operator=(
const MyClass &inOriginal)

{
Disown(mID);
mID = inOriginal.get_mID();
Own(mID);

}

6 eXcentrix: A Client-Server Architecture for Language Services



Copying a glue class object by using its 
assignment operator or its copy constructor 
creates a new reference to the same object 
inside the engine. If you modify the original 
object, you modify the copy and vice-versa. 
This behavior is desirable in some cases, but in 
other cases a real duplication may be necessary. 
To obtain a real duplicate of an object—that is, 
a separate object—you must call the 
Duplicate() method. It is more time-consuming 
for the engine, but the two objects then lead 
separate lives.

The engine doesn’t have to worry about when to 
collect garbage. The glue class operators look 
after incrementing and decrementing the 
reference counts of all objects and whenever an 
object’s reference count drops to 0, the engine 
deletes the object. Developers working in 
object-oriented languages don’t have to call 
delete explicitly. For that matter, they never 
have to call new either. When a developer 
instantiates a glue class object, the engine 
instantiates an object and returns an ID—the 
only member of the glue object. Because glue 
objects take up so little space (4 bytes), they 
should always be declared directly on the stack 
as local variables or inside another class as an 
aggregate member. No allocation, no pointers, 
no memory leaks.

4 .5 Asynchronous Notifications: 
A Crash-safe Implementation

Every time an unsolicited event occurs, such as 
the reception of a TCP/IP message, the engine 
needs to notify whichever application is 
interested in the particular type of event. These 
asynchronous notifications are implemented in 
the engine using callback functions. Each 
application has callback functions for each type 
of event it expects to receive. When an 
application is active, it registers as a listener for 
the events in which it is interested. The callback 
functions are hidden in glue classes whenever a 
programming language provides a more elegant 
way to solve the problem.

The first problem we faced when implementing 
callback functions was to avoid calling an 

application when it is no longer expecting 
messages. If this were to happen, the engine 
would pass the application pointers to deleted 
objects which would cause a crash. 

Our goal was to know when an application is 
no longer ready to receive messages. This is 
accomplished by encapsulating callback 
functions inside classes. The pointers to the 
callback functions are stored in the engine in 
instances of objects created by the listening 
application. When an object is no longer used 
by the application, its reference count reaches 0 
and it is destroyed by the engine. The callback 
function pointers are destroyed along with the 
object data members, so it is impossible for the 
engine to call a callback function once its object 
is no longer referenced by the listening 
application.

Callback functions need to be implemented in 
totally different ways in various languages. 
Procedural languages, such as C and Pascal, 
support callback functions directly, without 
any enhancement. They must be used as is, by 
supplying the engine with the address of a 
function that is in the listening application’s 
address space. The application may also 
supply an application-defined pointer along 
with the object that contains the callback 
functions. This pointer is passed as a 
parameter by the engine every time it calls the 
callback function. This allows the application 
to associate its own data structure with the 
object and to retrieve it instantly when the 
callback function is called.

Object-oriented languages provide virtual 
methods, which gave us a neat way to 
encapsulate callback functions. The 
implementation in glue classes is a bit tricky. It 
is done by implementing three different 
methods for each callback function in the 
encapsulating class. The first one is a static 
method that is, in fact, the callback function as 
seen by the engine. This method does nothing 
except cast the application-defined pointer into 
a pointer to the current class and call a virtual 
method using that pointer. It would look 
something like this in C++:

eXcentrix: A Client-Server Architecture for Language Services 7



class MyClass
{

...

protected:

static xsErr StaticCallback(
void *inThis,
long inParam)

{
return reinterpret_cast<MyClass *>(inThis)

->RealCallback(inParam);
}

};

The second method to implement is the real 
callback method. It consists of a virtual method 

that has the same parameters as the static one 
except for the application-defined pointer:

class MyClass
{

...

protected:

virtual xsErr RealCallback(
long inParam)

{
// you must overload this function
ASSERT(false);
return xsErrNone;

}
};

This method is like an abstract method except 
that the compiler will let you instantiate the 
class to which it belongs. We did not make it a 
pure virtual method in order to allow the engine 
to instantiate any class, even those that contain 
callback methods. This was necessary for object 
streaming—a subject we won’t go into here. The 
method does contain an assertion, so if an 
object receives a notification and the 

programmer has not overloaded the 
corresponding method, it will assert in debug 
mode but will not crash in release mode.

The third method to implement is a special 
method that registers the callback function. It 
sometimes requests a service from the engine at 
the same time. It is often a constructor, since 
some objects can be notified without ever 

8 eXcentrix: A Client-Server Architecture for Language Services



requesting something from the engine. The method would look something like this:

MyClass::MyClass()
{

EngineFunction(this, StaticCallback);
}

In pseudo-object-oriented languages like Visual 
Basic, virtual methods are not supported. Still, 
VB provides a way of handling notifications by 
raising events. Raising an event is like throwing 
an exception, only it is less exciting. It basically 
calls the functions that are registered for an 
event and for the given instance of the class 
(you’ve read it right: not for all the instances of 
the class). So you need to know the exact 
instance of the object at compile time to be able 
to receive events. The implementation is even 
trickier than in C++. You must first implement a 
global function outside the class (in another 
file). The global function plays the same role as 
the static function in C++. It is the callback 
function as seen by the engine. This function 
cannot raise the event itself because it is not a 
member of a class, but it must not be a member 
of the class so you can obtain its address by 
calling AddressOf (I suddenly feel like I’m 
writing a legal document). The global function 

must instead call a member function whose only 
purpose is to call RaiseEvent which fires the 
event. This whole process is initiated by 
passing the address of your callback function to 
the engine using the AddressOf keyword in the 
class constructor or in another method. If you 
try to use the application-defined pointer to 
keep the address of an object, the Visual Basic 
runtime won’t recognize it in the callback 
function and will throw a C++ exception!

4 .6 Exceptions: Only When Possible

Exceptions are not handled by all programming 
languages, so the engine returns an error code 
instead of throwing an exception when an error 
occurs. When a glue class method receives an 
error code and the programming language 
includes a try-catch mechanism (like C++), the 
method throws an exception:

void
MyClass::Function(

long inParameter)
{

xsErr err;

if ((err = EngineFunction(inParameter)) != xsErrNone) {

throw err;
}

}

In other cases, the error code is simply returned 
to the calling application.

eXcentrix: A Client-Server Architecture for Language Services 9



5. How To Use the Architecture

If you want to make a language server or a text 
application eXcentrix-compatible, you only 
have to do a modest amount of coding. The 
classes and functions needed are already 
defined in the Language Service Part. Since it 
would take too much time to give examples in 
all programming languages, the examples below 
are in C++.

If you want to adapt the architecture to other 
types of service (or for language services not 
already covered in our Language Service Part), 
you have a little more work to do. The required 
labor is divided as follows:

• You define the data to be transported

• You create the necessary resources in the 
Part Editor, a drag-and-drop IDE 
provided with our SDK

• You define classes and/or functions for 
the type of service you wish to provide

• eXcentrix handles all the low-level stuff 

5 .1 Coding Required for a Language 
Server

Making a language server eXcentrix-compatible 
involves these coding tasks:

• Deriving a subclass from an existing 
class 

• Writing the necessary initialization code

• Writing the necessary clean-up code 

To demonstrate the coding effort required, we 
will explain what must be done to accomplish 
the first task mentioned above: Deriving a class 
needed for a language server.

eXcentrix provides a number of classes, all of 
which are derived from its base class Object. 
For a typical single-threaded server, the 
developer must derive a subclass from the class 
AsyncTextServerSession. The following diagram 
shows the relevant branch of the class hierarchy 
as well as MyTextSession, the derived class.

AsyncTextServerSession

DoReceiveChar
DoReceiveRequest
DoReceiveItemResult

SyncTextServerSession

TextServerSession

GetSourcePos
SelectText
ReplaceText
GetSelectionStart
GetSelectionCount
Restart

ServerSession

Session

Object

10 eXcentrix: A Client-Server Architecture for Language Services



Server developers must derive a subclass from eXcentrix class AsyncTextServerSession

If you want to receive the text character by 
character, you must overload the 
DoReceiveChar() function in the derived class. 
This function should do the work of reading 
characters, processing them, and replacing 
them. It would typically call various functions 
inherited from the class TextServerSession, such 

as GetSourcePos() and ReplaceText() as well as 
the server’s own processing functions. 

For example, DoReceiveChar() might be defined 
as follows:

bool
MyServerSession::DoReceiveChar(

bool inMoreText,
xsChar inChar)

{
// if there is text
if (inMoreText) {

// Calls to the server’s own processing functions
// until the end of a sentence or a paragraph
if (mTextPos >= mTextLength) {

// Replace the text
ReplaceText(mBufferPos, mTextPos, mTextPos, mText);
mTextPos = 0;

} else if (mTextPos > 0) { // Send the final results

// Replace the text
ReplaceText(mBufferPos, mTextPos, mTextPos, mText, false);
mTextPos = 0;
inMoreText = false;

}
}
return inMoreText;

}

You can also receive text in blocks—for 
example, 4 kb. In this case, you would overload 
the method DoReceiveTextResult() which is a 
method of TextServerSession. But you would 
have to take care of preserving text formats 
yourself.

5 .2 Coding Required for a Text Client

If you use TextEdit or WASTE, you don’t have 
to do any coding!

If you have your own text engine, you must 
derive a subclass from the eXcentrix class, 
TextItem. The following diagram shows the 
relevant branch of the class hierarchy as well as 
MyTextItem, the derived class:

eXcentrix: A Client-Server Architecture for Language Services 11



MyTextItem

DoReceiveLimitRequest
DoReceiveTextRequest
DoReceiveSelectResult
DoReceiveReplaceResult

TextItem

DoReceiveLimitRequest
DoReceiveTextRequest
DoReceiveSelectResult
DoReceiveReplaceResult

Item

Target

Object

Client developers must derive a subclass from the eXcentrix class TextItem

In the eXcentrix scheme of things, sessions are 
server-driven. Apart from the client’s initial 
request for a service, the client is passive. It 
waits for various requests from the server and 
then it waits until the server sends the results. 
The methods that you must overload in 
MyTextItem are: 

• DoReceiveLimitRequest 

• DoReceiveTextRequest

• DoReceiveSelectResult

• DoReceiveReplaceResult

DoReceiveLimitRequest() must return the 
boundaries of the document and of the selected 
text to the server. The method would be 
overridden something like this:

12 eXcentrix: A Client-Server Architecture for Language Services



xsErr
MyTextItem::DoReceiveLimitRequest(

LimitRequest &inLimitRequest)
{

// Definition of local variables:
LimitResult theResult; // instance of an eXcentrix class 
uint32 docCount; // for storing length of document
uint32 selectStart; // for storing start of selection
uint32 selectEnd; // for storing end of selection

// Get the length of the document with call(s) to the
// client’s own methods and store in docCount

// Set the document boundaries
theResult.SetItemStartingPos(0); // always zero
theResult.SetItemCount(docCount);

// Get start and end positions of the selection with 
// call(s) to client methods and store in selectStart & 
// selectEnd

// Set the selection boundaries
theResult.SetSelectionStartingPos(selectStart);
theResult.SetSelectionCount(selectEnd);

SendItemResult(theResult);

return xsErrNone;
}

DoReceiveTextRequest() must return the 
portion of text requested by the server. The 

method might be overridden like this:

xsErr
MyTextItem::DoReceiveTextRequest(

TextRequest &inTextRequest)
{

// Calls to the client’s own methods that 
// can return a portion of text

}

DoReceiveSelectResult() must select the text in 
the document as requested by the server—the 

text would be highlighted. The method would 
be overridden as follows:

eXcentrix: A Client-Server Architecture for Language Services 13



xsErr
MyTextItem::DoReceiveSelectResult(

SelectResult &inSelectResult)
{

// Calls to the client’s own methods that
// can select text

}

DoReceiveReplaceResult() must replace text in 
the document based on information received 
from the server:

• start position in the document

• length of original text

• replacement text

• length of replacement text

The method would be overridden as follows:

xsErr
MyTextItem::DoReceiveReplaceResult(

ReplaceResult &inReplaceResult)
{

// Definition of local variables:
// Replacement and TextRun are eXcentrix classes
// xsPosition and xsPositionFirst are eXcentrix types
Replacement theReplacement = inResult.GetReplacement();
xsPosition currentPosition = xsPositionFirst; 
TextRun aRun;

// Get replacement text and insert it in original document
while (theReplacement.GetNextTextRun(currentPosition,aRun)) {
 

// Calls to the client’s own methods that 
// can replace a portion of text in the document

}

return xsErrNone;
}

6. Conclusion

We developed a client-server architecture in 
order to make our lives, as developers of a 
translation service, simpler. We now think that 
it could also simplify the lives of end users and 

of other programmers who develop text 
applications and language servers. The 
architecture allows any server to plug into any 
client. It could be applied to any domain in 
which an abundance of servers and clients 
causes compatibility problems for users and 

14 eXcentrix: A Client-Server Architecture for Language Services



endless reprogramming for developers.

eXcentrix: A Client-Server Architecture for Language Services 15


